Does Living In A City Cause Autism?

Understanding the Urban Connection to Autism Risk

The increasing prevalence of autism spectrum disorder (ASD) has prompted extensive research into its multifaceted causes. While genetics play a significant role, environmental factors linked to urban living—such as air pollution and limited green spaces—are gaining attention for their potential contribution to autism risk. This article explores scientific evidence, geographic trends, and urban environmental influences to clarify the relationship between city living and autism development.

Environmental Pollution and Autism: Evidence from Industrial Regions

Environmental Toxins in Industry Linked to Higher Autism Rates in Children

How does industrial pollution affect ASD prevalence?

Research from the Italian city of Taranto illustrates a notable link between heavy industrial pollution and higher autism rates among children. In areas with significant contamination from industries emitting heavy metals, PCBs, PAHs, and dioxins, children aged 6-11 show a prevalence rate of 9.58 per 1000, far exceeding the 6.66 per 1000 observed in less polluted municipalities. These findings underscore the potential impact of environmental toxins on neurodevelopment, especially in industrial zones with persistent exposure.

While older children (12-18 years) did not show a statistically significant difference, the data continuously suggest that early childhood exposure in certain environments plays a critical role in ASD risk.

The association remains consistent even after controlling for variables such as ethnicity, parental education, maternal age, and tobacco smoke exposure, reinforcing the hypothesis that environmental contaminants directly or indirectly influence neurodevelopmental outcomes.

What pollutants are most implicated in autism risk?

Various chemicals associated with industrial emissions are believed to interfere with fetal brain development. These include heavy metals like mercury and lead, PCBs—used in electrical appliances and known for their persistence—and airborne chemicals like PAHs and dioxins, which originate from combustion processes.

These pollutants are recognized in scientific literature for their neurotoxic effects, capable of crossing biological barriers during pregnancy and affecting fetal development.

In addition to industrial pollutants, traffic-related air pollution, including diesel exhaust and components such as carbon monoxide and nitrogen dioxide, also contributes significantly to the environment's neurodevelopmental impact.

How do studies on contaminated sites inform our understanding?

Multiple studies reinforce the possible connection between living near pollution sources and increased ASD risk. For example, in California, children born within roughly 1,000 feet of major freeways—including those with high traffic volume—showed a doubled risk for ASD. Although these studies relied on proximity as a proxy for exposure rather than precise measurements, they align with biological plausibility regarding inhaled pollutants.

In Ontario, Canada, a population-based case-control study examined environmental metrics alongside ASD diagnoses, offering detailed analysis and reinforcing associations observed elsewhere.

Comparative overview of ASD prevalence and environmental factors

Location ASD Prevalence (per 1,000 children) Main Pollution Sources Notable Findings
Taranto, Italy 9.58 (ages 6-11) Industrial emissions (heavy metals, PCBs, PAHs, dioxins) Higher ASD prevalence near contaminated sites
California, USA 3.41 (ages 12-18) Freeways and vehicular traffic Proximity to highways doubles risk
Ontario, Canada Data from population study General environmental metrics Greenspace proximity linked to lower ASD risk

The importance of environmental and urban planning

These findings collectively emphasize the importance of regulating industrial emissions, reducing traffic pollution, and increasing greenspaces in urban areas. Although the direct causal pathways require further investigation, existing evidence suggests that minimizing exposure to neurotoxic environmental contaminants could significantly mitigate ASD risk, especially when exposure occurs during prenatal development.

Efforts to monitor pollutants, enforce stricter emission standards, and promote green infrastructure are essential components of public health strategies aimed at neurodevelopmental health in children.

Broader implications and future directions

Understanding the environmental influences on ASD development can help shape policies to protect vulnerable populations. Ongoing research should aim for more precise exposure measurements, explore underlying biological mechanisms, and assess the potential benefits of urban planning interventions.

By addressing the complex web of environmental exposures—ranging from industrial pollutants to traffic emissions—society can work toward reducing autism prevalence and supporting healthier developmental environments for children.

This body of evidence highlights the urgent need for integrated approaches combining scientific research, public health policy, and community engagement to combat environmental risk factors for autism.

Living Near Industry and Heavy Pollutants: A Correlation with Increased ASD Cases

Industrial Pollution and Traffic Emissions Elevate Autism Risk: What Communities Should Know

What environmental factors are believed to contribute to autism, aside from air pollution and urbanization?

Beyond general air pollution and urban living, scientific research highlights several environmental factors that may influence autism risk. Exposure to heavy metals such as mercury, lead, and arsenic during prenatal development has attracted concern, as these substances can interfere with brain growth and neural connections. Pesticides and chemicals released during industrial processes, including bisphenol A (BPA), polychlorinated biphenyls (PCBs), and dioxins, are also under investigation for their neurotoxic effects.

Maternal health issues during pregnancy, including obesity, diabetes, immune system disorders, and chronic inflammation, can heighten vulnerability when combined with environmental exposures. Furthermore, maternal antibodies that cross the placenta and interact with fetal brain development may contribute to autism.

Additional factors such as lack of green spaces and dense urban environments have been linked to higher autism rates, possibly due to increased environmental stressors and pollution levels associated with urban density.

How does living in an industrial or polluted urban area influence autism prevalence?

Research from regions like Taranto, Italy, provides strong evidence of the correlation between industrial pollution and autism prevalence. Taranto is known for its heavy industrial activity, particularly facilities emitting substances like heavy metals, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and dioxins.

Children aged 6-11 years living in high-contamination sites showed a significantly higher autism prevalence, with a rate of 9.58 per 1000 compared to 6.66 per 1000 children in other municipalities—a difference statistically significant with a p-value of 0.002.

These pollutants are recognized for their neurotoxic properties, capable of disrupting normal brain development. The exposure during critical periods of growth can contribute to neurodevelopmental disorders, including autism.

Additionally, proximity to factories and waste sites enhances exposure levels. Industrial chemicals can bioaccumulate in the environment and the human body, affecting fetal and early childhood development.

Studies in California, USA, echo these findings, indicating that children born or living close to industrial zones and freeways with high vehicle emissions have increased risks.

Overall, living in areas with high pollution from industrial activities appears to elevate the likelihood of autism, highlighting the importance of environmental health interventions.

Region/Study Population Sample Main Findings Type of Pollution/Factors Notes
Taranto, Italy Children aged 6-11, 304 with ASD and controls Higher ASD prevalence in contaminated sites Heavy metals, PCBs, PAHs, dioxins Significant increase in high-risk areas (p=0.002)
California, USA Children near freeways, N=563 in study Increased ASD risk with proximity Diesel exhaust, PAHs, particulate matter Twice the risk when living about 1,000 ft from freeways
Ontario, Canada Population-based, ASD and environmental data Proximity to green spaces may reduce risk Green spaces, NDVI, GVI Greenspace effects less significant after adjustments

This evidence suggests that industrial pollution—not only from visible sites but also from vehicle emissions—can significantly influence neurodevelopment. Policies aimed at reducing exposure to industrial contaminants might play a crucial role in decreasing autism prevalence in affected communities.

Air Pollution Exposure During Pregnancy and Early Childhood as a Risk Factor

Prenatal and Early Childhood Air Pollution Exposure: Key Factors in Autism Development

How does air pollution influence the risk of autism spectrum disorder?

Research indicates that air pollution significantly impacts the likelihood of developing autism spectrum disorder (ASD). Both prenatal and early childhood exposures to certain air pollutants are associated with increased ASD risk. Finely divided particles known as PM2.5, originating from traffic emissions, industrial processes, and residential heating, have been extensively studied. During pregnancy, especially in the third trimester, exposure to these particles can affect fetal brain development.

Large-scale cohort studies and meta-analyses have demonstrated that children exposed to higher levels of traffic-related pollutants tend to have greater odds of ASD diagnosis. For example, proximity to freeways and busy roadways with high traffic volumes has shown to double the risk of autism. These associations persist even after controlling for other factors such as ethnicity, socioeconomic status, and parental age.

The mechanisms behind this link are complex. Pollutants may induce neuroinflammation, oxidative stress, and disruptions in neurodevelopmental processes. Tiny particles can cross biological barriers, entering the bloodstream and potentially reaching the developing brain. Such exposure during critical growth windows can interfere with neural connectivity and maturation, subsequently increasing ASD susceptibility.

What specific pollutants from urban sources are believed to affect neurodevelopment?

Urban environments emit a variety of pollutants capable of influencing neurodevelopment. Among these, key culprits include:

  • Particulate Matter (PM2.5): Fine particles that penetrate deep into lungs and can reach the bloodstream, carrying toxic substances.
  • Nitrogen Dioxide (NO2): Generated mainly from vehicle exhaust, this gas can cause respiratory inflammation and systemic effects.
  • Carbon Monoxide (CO): A colorless, odorless gas from combustion processes that can interfere with oxygen delivery, impairing brain development.
  • Polycyclic Aromatic Hydrocarbons (PAHs): Byproducts of incomplete combustion from traffic, industrial emissions, and residential burning; linked to neurotoxic effects.

These pollutants often originate from transportation, industrial activities, and residential sources. Exposure during pregnancy—especially during the later stages—may trigger inflammatory responses, oxidative stress, and neurotoxicity, leading to altered brain development.

Biological mechanisms involved

The neurotoxic effects of urban pollutants involve multiple biological pathways. Exposure to these pollutants can lead to:

  • Neuroinflammation: Activation of immune responses in the brain, which can interfere with neural connectivity.
  • Oxidative Stress: Imbalance between free radicals and antioxidants damages cells and tissues in the brain.
  • Disruption of Neurotransmitter Systems: Alterations in serotonin and dopamine pathways impacting mood and social behaviors.
  • Blood-Brain Barrier Disruption: Certain pollutants can weaken this protective barrier, allowing harmful substances into neural tissue.

Collectively, these mechanisms undermine neural development during critical periods, increasing the risk for ASD.

Pollutant Source Main Effect Evidence Level
PM2.5 Traffic, industry, heating Penetrates into bloodstream; neurotoxicity Strong evidence from cohort studies
NO2 Vehicle emissions Inflammation, oxidative stress Consistent associations in research
CO Combustion sources Interferes with oxygen delivery Biological plausibility supported
PAHs Traffic, residential burning Neurodevelopmental disruption Multiple epidemiological findings

From traffic emissions to industrial pollutants, urban air contaminants pose documented risks to neurodevelopment, especially when exposure occurs during fetal development. While precise causation remains under investigation, the evidence underscores the importance of reducing air pollution to safeguard children's health and development.

Genetic and Environmental Interactions in Autism Development

What are the known genetic and environmental factors influencing autism development?

Autism spectrum disorder (ASD) arises from a complex interplay of genetic and environmental influences. Research indicates that genetic factors are highly significant, with heritability estimates ranging from 60% to 90%. Twin and family studies have identified numerous genes associated with autism, including NLGN, SHANK, and NRXN, which are fundamental to synaptic development and neuronal communication. Variations such as copy number alterations and de novo mutations often disrupt normal brain function and are linked to increased ASD risk.

On the environmental side, prenatal exposure to various harmful agents substantially contributes to autism development. Maternal health conditions—such as obesity, diabetes, and immune disorders—have been associated with higher risks. Exposure to air pollution, including fine particulate matter (PM2.5), heavy metals like lead and mercury, pesticides, and polycyclic aromatic hydrocarbons (PAHs), especially during critical periods like pregnancy, can influence neurodevelopment.

Birth complications, such as prematurity, very low birth weight, and oxygen deprivation, are also linked to increased autism susceptibility. For example, living close to industrial sites emitting heavy metals and airborne pollutants has been associated with higher ASD prevalence, as seen in regions like Taranto, Italy, and California, USA.

The current scientific consensus emphasizes that neither genetics nor environment alone fully explains ASD. Instead, the interaction between an individual's genetic makeup and environmental exposures—known as gene-environment interplay—is crucial. For instance, a child with genetic susceptibility may be more vulnerable to environmental insults, magnifying the risk of ASD.

Studies demonstrate that prenatal exposure to pollutants like diesel exhaust, carbon monoxide, nitrogen dioxide, and airborne PAHs can penetrate deep into the lungs and reach fetal tissues, potentially disrupting brain development. Similarly, living near busy freeways during pregnancy has been linked to doubled autism risk in some research, adding evidence that environmental pollutants influence neurodevelopment.

In conclusion, understanding ASD necessitates a comprehensive view that considers genetic predispositions intertwined with environmental factors. This intricate relationship underscores the importance of reducing environmental hazards during pregnancy and supports continued research into how these interactions influence autism pathogenesis.

Why Urban Living Does Not Singly Cause Autism but Contributes to Its Risk Factors

Urban Living and Autism: Understanding the Environmental and Social Influences

Does living in urban areas or cities affect the likelihood of developing autism?

Research suggests that residing in urban environments can influence the risk of children developing autism spectrum disorder (ASD). Several studies have demonstrated a pattern where increased urbanicity correlates with higher ASD prevalence.

A notable example is a large Danish cohort study, which revealed a dose–response relationship: the more urban the area, the higher the observed rates of autism. This trend was particularly evident among children born in rural regions who later moved to more urban settings. Such findings imply that both environmental exposures and factors related to healthcare access and awareness might contribute.

Ecological studies from various industrial regions, including Taranto in Italy, support this view. Children living near polluted industrial sites, exposed to contaminants such as heavy metals, PCBs, PAHs, and dioxins, have shown a significantly higher prevalence of ASD. For instance, in Taranto, children aged 6-11 living in high-risk zones exhibited an ASD rate of 9.58 per 1000, compared to 6.66 per 1000 in other municipalities.

Similarly, in North America, children born close to freeways with high traffic volumes face increased risks; those living within approximately 1,000 feet of a freeway have doubled the likelihood of autism. The pollutants from traffic, such as diesel exhaust particles, nitrogen dioxide, and fine particulate matter (PM2.5), are believed to influence neurodevelopment during sensitive periods.

These environmental factors, coupled with urban living’s indirect effects—such as higher exposure to pollutants and possibly reduced green space—may heighten ASD risk. However, it’s important to recognize that urbanicity alone does not cause autism but interacts with various biological and environmental variables.

Overall, evidence from diverse geographic and population-based studies indicates that urban living is associated with increased ASD prevalence, primarily through exposure to environmental pollutants and other urban-related factors. While these findings improve our understanding of environmental contributions to autism, ongoing research is necessary to clarify causality and mechanisms.

Interpreting the Urban-Autism Connection

While living in a city does not directly cause autism, evidence suggests that urban environments—characterized by higher pollution levels, reduced greenspaces, and industrial exposures—may increase the risk factors associated with ASD. The complex interplay of genetic predispositions and environmental stressors like air pollution and industrial toxins underscores the importance of sustainable urban planning and public health strategies. Recognizing these links can help guide policies to mitigate environmental risks, promote healthier urban environments, and facilitate early interventions, ultimately improving neurodevelopmental outcomes for children across diverse populations.

References

Other articles
More knowledge about ABA

Recent articles

Social Stories For Autism
Supporting Autism Through Narrative Learning
Lead Exposure & Fevers During Pregnancy Lead to Autism
Unraveling the Impact of Maternal Environmental Exposures on Autism Risk
Angelman Syndrome
Understanding the Challenges and Research Frontiers of Angelman Syndrome
Autism vs. ADHD
Understanding the Nuances of Neurodivergence: Autism and ADHD
Autism Diagnostic Criteria (DSM-5)
Comprehensive Insights into Autism Diagnosis Using DSM-5 Standards
Dyspraxia & Autism
Unraveling the Intertwined Worlds of Motor and Social Development
Handwashing & Showering To Kids With Autism
Supporting Independence in Hygiene for Children with Autism
Autism and Addiction's Close Connection
Decoding the Complex Relationship Between Autism and Addiction
Autism and Puberty
Navigating the Transition: A Comprehensive Guide to Autism and Puberty
Do Autistic People Get Injured More?
Understanding Injury Risks in the Autism Spectrum
Food List For Autism
Nourishing Autism: Essential Foods and Nutritional Strategies
Head Banging Autism
Understanding and Managing Head Banging in Children with Autism
Signs Your Toddler Is Not Autistic
Understanding Typical Toddler Development and Recognizing When It’s Not Autism
Autism and Tics
Exploring the Intersection of Autism and Tics: Facts and Insights
Baby Food Autism Lawsuit
Legal Battles Over Toxic Baby Food Shake Consumer Confidence and Raise Urgent Safety Concerns
High-Functioning Autism
Unraveling the Nuances of High-Functioning Autism: Insights and Support Strategies
New Mexico Autism Resources
Comprehensive Guide to Autism Support in New Mexico
Accommodations For Students With Autism
Supporting Success: Inclusive Strategies for Autistic Learners
History & Timeline Of Autism
Tracing the Evolution of Autism Understanding and Recognition
Autism Quotes
Celebrating Diversity and Strength: The Power of Autism Quotes
Autism Prevalence In Indiana
Understanding the Growing Impact of Autism in Indiana
Music Therapy And Autism
Harnessing the Power of Music for Autism Support
Does Living In A City Cause Autism?
Urban Environments and Autism: Unraveling the Complex Linkages
PTSD vs. Autism
Bridging the Gap: Understanding the Overlap and Distinction between PTSD and Autism
Registered Behavior Technician Interview Questions & Answers
Mastering Your RBT Interview: Essential Strategies and Insights
How Long Does It Take To Get RBT Certification?
A Step-by-Step Guide to Achieving RBT Certification in Record Time
Sensory Seeking vs. Sensory Avoiding in Children
Understanding Diverse Sensory Responses in Children
Do Vaccines Cause Autism?
Unraveling the Myth: Vaccines and Autism
Strengths and Abilities In Autism
Celebrating Cognitive Diversity: Unlocking the Hidden Talents of Autistic Minds
Can Lyme Disease Cause Autism?
Exploring the Potential Links Between Infectious Diseases and Autism Spectrum Disorder
America's First Autism Certified City
Mesa Sets a Pioneering Standard in Autism Support and Inclusion
Autism and Depression
Navigating the Complex Landscape of Autism-Related Mood Disorders
Picture Exchange Communication System (PECS)
Unlocking Communication: The Power of PECS
Can Autistic People Work?
Unlocking Potential: Autism and the Future of Work
Social Anxiety vs. Autism
Decoding Social Challenges: Understanding the Differences and Similarities between Social Anxiety and Autism
Can EMFs Cause Autism?
Exploring the Potential Link Between Electromagnetic Fields and Autism Spectrum Disorder
Why Do Autistic People Like Sonic?
Exploring the Fascination of Sonic the Hedgehog Among Autistic Individuals
What Happens If Autism Is Not Treated?
The Critical Importance of Early Support for Autism Spectrum Disorder
Stimming In Autism
Understanding the Role of Repetitive Behaviors in Autism
Autism's Effects On The Brain
Unraveling the Neural Underpinnings of Autism Spectrum Disorder
Stimming In Autism
Understanding the Role of Repetitive Behaviors in Autism
Are Autistic People Smart?
Unraveling the Cognitive Spectrum of Autism
Famous Politicians With Autism
Unveiling Neurodiversity in Leadership
Does My Child Have Autism?
Recognizing Autism Spectrum Disorder: A Comprehensive Guide for Parents
Autism Dating
Navigating Love and Connection as an Autistic Adult
Autism Obsessions
Understanding the Complexities of Autistic Focus and Repetitive Behaviors
Teaching Writing to Students with Autism
Innovative Approaches Transforming Writing Instruction for Autistic Learners
Sensory Processing Disorder vs. Autism
Deciphering Sensory Challenges: A Clearer Understanding of SPD and Autism
Gut Health and Autism
Unraveling the Connection Between Gut Microbes and Autism Spectrum Disorder
Early Signs Of Autism In Babies And Kids
Recognizing Autism Early: Key Indicators for Parents and Caregivers
Autism vs. Asperger's
Understanding the Spectrum: Differentiating Autism and Asperger's Syndrome
Autism and Obesity
Understanding the Complex Link Between Autism and Obesity
Autism and Obesity
Understanding the Complex Link Between Autism and Obesity
Vitamin D and Autism
Unraveling the Link Between Sunshine Vitamin and Autism Spectrum Disorder
How Do Autistic Brains Work?
Unlocking the Mysteries of the Autistic Brain
Are Autistic People Better At Logical Thinking
Unraveling the Cognitive Map: Autistic Minds and Logic
Sociopath vs. Autism
Understanding the Complexities: Differentiating Sociopathy and Autism
Autism Evaluation Centers Near Me
Navigating Autism Evaluation Services for Your Child
Do Older Fathers Cause Autism?
Unraveling the Link Between Paternal Age and Autism Risk
Autism Sensory Overload & Overstimulation
Navigating Sensory Challenges in Autism Spectrum Disorder
Sensory Activities for a Child with Autism
Enhancing Development Through Sensory Engagement in Autism
Autism and Head Size
Understanding the Link Between Brain Development and Autism Spectrum Disorder
Autistic Savant
Unveiling the Mysteries of the Brain's Hidden Talents
Odds Of Having A Child With Autism By Age
Understanding the Impact of Parental Age on Autism Risks
Does Mold Cause Autism?
Unraveling the Connection Between Mold and Autism Spectrum Disorder
Autism and Parkinson's
Unraveling the Connections Between Autism and Parkinson's Disease
Signs & Symptoms Of Autism In Adults
Understanding Autism Spectrum in Adult Life: Traits and Recognition
Shy Child vs. Autism
Deciphering Social Cues: Understanding the Differences Between Shy Children and Those with Autism
What Is Occupational Therapy For Autism?
Unlocking Potential: The Power of Occupational Therapy in Autism Support
What Is The Treetop ABA Therapy?
Innovative Approaches in Autism Support: Exploring Treetop ABA Therapy
RBT Exam Study Guide
Mastering Your Path to RBT Certification: A Comprehensive Guide
Do Autistic People Talk To Themselves?
Unveiling the Nature of Self-Talk in Autism: Insights and Understanding
Do Autistic People Talk To Themselves?
Unveiling the Nature of Self-Talk in Autism: Insights and Understanding
Potty Training An Autistic Child
Mastering the Art of Toilet Training for Children with Autism
Is Lack Of Eye Contact An Autism Symptom?
Understanding Eye Contact in Autism Spectrum Disorder
What Is Pervasive Developmental Disorder
Understanding Autism Spectrum: Beyond the Labels
What Is Pervasive Developmental Disorder
Understanding Autism Spectrum: Beyond the Labels
Does Emotional Neglect Cause Autism?
Unraveling the Myths and Facts of Autism's Origins
Find Free RBT Training Near You
Unlocking Opportunities to Become a Certified RBT
Alexithymia: Causes, Symptoms & Treatments
Unraveling the Mysteries of Alexithymia
The Rate of Job Growth for BCBAs
Surging Demand and Bright Prospects for BCBAs
Vocal Stimming In Autism
Understanding Vocal Stimming: A Key Aspect of Autism Spectrum Behaviors
What Is Atypical Autism?
Exploring the Subtle Spectrum of Atypical Autism
How Do You Get An Autistic Child To Keep Their Shoes On?
Mastering Shoe Challenges with Autistic Children: Strategies and Support
Is Autism Funding Taxable?
Understanding the Tax Implications of Autism Funding and Support
How to Talk to Someone with High Functioning Autism
Understanding and Supporting Communication in High-Functioning Autism
TEACCH Method For Autism
Transforming Autism Support with Structured Visual Strategies
Autism vs. Down Syndrome
Understanding the Complexity of Autism and Down Syndrome
When Is Autism Diagnosed?
Understanding the Timeline of Autism Diagnosis: Early Signs and Assessment Methods
Do Seed Oils Cause Autism?
Understanding the Complex Relationship Between Dietary Fats and Autism
BCBA Career Path To Take
Navigating Your Future in Behavior Analysis
Homeschooling a Child With Autism
Empowering Families: A Comprehensive Guide to Homeschooling Children with Autism
Childhood Disintegrative Disorder
Understanding a Rare Neurodevelopmental Condition
Movies & TV Shows About Autism
Exploring Representation and Reality in Media Encodings of Autism
Elopement and Autism
Understanding and Addressing Wandering in Children with Autism
First Steps in ABA: What to Expect When Starting Therapy
Starting ABA therapy can feel overwhelming for both children and parents. This article outlines what the initial diagnosis looks like, how the therapy plan is created, and what to expect during the first weeks of therapy.
5 Myths About ABA Therapy That Many Parents Still Believe
Although ABA therapy has a strong scientific foundation, many myths and misconceptions have grown around it. In this article, we debunk the most common ones and explain the reality behind ABA.
ABA Therapy: What It Is and How It Helps Children with Autism
Applied Behavior Analysis (ABA) is one of the most researched and effective methods for working with children on the autism spectrum. But what exactly is ABA, and how does it support a child's development?
Join us today

We’re All About You, Your Family, and Your Child

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.